An 8-Bit CPU Control Circuit Design

CSE 207 Final Project

Section 2

Haibei Zhang

Dec 10, 2002

http://www.haibei.net/cse207/finalproject.pdf
haibei@haibei.net
I. Objectives

The objective of this project is to design a control circuit for the Robertics WFBCSC II CPU, a 8-bit Von Neumann machine. 

The inputs and outputs are:

	Input
	Output (Abbreviation)

	Reset (Active High)
	PC_TO_BUS (Active Low) (PB)

	ZCC (Zero Condition Code)
	BUS_TO_PC (Active Low) (BP)

	Clock
	BUS_TO_MAR (Active Low) (BMAR)

	I7 (Instruction 8th bit)
	BUS_TO_MDR (Active Low) (BMDR)

	I6 (Instruction 7th bit)
	MDR_TO_BUS (Active Low) (MDRB)

	I5 (Instruction 6th bit)
	R (Active Low)

	I4 (Instruction 5th bit)
	W (Active Low)

	I3 (Instruction 4th bit)
	BUS_TO_AIR (Active Low) (BAIR)

	I2 (Instruction 3rd bit)
	AOR_TO_BUS (Active Low) (AORB)

	I1 (Instruction 2nd bit)
	BUS_TO_IR (Active Low) (BI)

	I0 (Instruction 1st bit)
	R3 (Register Address 4th bit)

	
	R2 (Register Address 3rd bit)

	
	R1 (Register Address 2nd bit)

	
	R0 (Register Address 1st bit)

	
	REG_TO_BUS (Active Low) (RB)

	
	BUS_TO_REG (Active Low) (BR)

	
	S3

	
	S2

	
	S1

	
	S0

	
	CIN (Active Low) (CN)


II. Design Procedures
1. Design the state diagram for the 8-bit instruction fetching. (Each state is assigned a 3-bit binary number)

[image: image1]
2. Design the complete state diagram for both 8-bit and 16-bit instruction fetching. (Each state is assigned a 3-bit binary number)

[image: image2]
3. Design the decoder
At state 100 and 111 shown above, IR is ready to input instruction into the circuit. I7 is used to determine whether the instruction is 8-bit or 16-bit (at state 100). I6, I5, I4 are used to choose a circuit which handles the execution of the instruction. (The 3 inputs of the decoders.) Therefore two 74138 decoders are used for 8-bit and 16-bit instructions. For 8 bit instructions, the decoder is enabled when state is 100, Reset=0, I7=0; for 16 bit instructions, the decoder is enabled when state is 111 and Reset=0. Once the decoder is enabled, it decodes I6, I5, I4, then sets one of its output pin active (the Start signal for the execution circuit), which triggers that execution to run.
4. Design the execution circuit (instruction processor)

Each instruction has its own circuit, which are also state machines. These machines are normally staying in a standby state. Once it receives a “Start” signal from the decoder, it starts running. 
When the instruction-fetching machine reaches state 100 and 111, the next state will take instruction processor’s output into consideration. When the instruction is still in processing, it stays at 100 or 111; when the instruction is finished, it goes to 001; when the instruction encounters error, it goes to 000.

Therefore, the execution circuit should have these 2 outputs: Finished_L, Error_L. If both of them are inactive, the machine is processing an instruction.
Following are transition diagrams for each instruction:

ADDR (Opcode: 0010)

[image: image3]
SUBR (Opcode: 0011)


[image: image4]
INCR (Opcode: 0100)


[image: image5]
DECR (Opcode: 0101)


[image: image6]
BR (Opcode: 0110)


[image: image7]
BRZ (Opcode: 0111)


[image: image8]
LOAD (Opcode: 1000)


[image: image9]
LDI (Opcode: 1001)


[image: image10]
ADD (Opcode: 1010)


[image: image11]
SUB (Opcode: 1011)


[image: image12]
STORE (Opcode: 1100)


[image: image13]
B (Opcode: 1110)


[image: image14]
BZ (Opcode: 1111)


[image: image15]
UNDEFINED INSTRUCTIONS (Opcode: 0000, 0001, 1101)


[image: image16]
(For extra credit!)
III. Transition Lists, Excitation Equations (D Flip-Flop), Output Equations (This part was finished before Robert introduced MSI Counter. In practice, I will use MSI counter rather than D Flip-Flop.)
The Main Circuit (Instruction Fetching Cycle)
a) State – Next State transition list:
	Q2Q1Q0
	Reset (Active High)

	
	1
	0

	000
	000
	001

	001
	000
	010

	010
	000
	011

	011
	000
	100

	100
	000
	001 if I7=0, Finished8_L=0 (go to next cycle)

	
	
	000 if I7=0, Error_L=0 (go to error state)

	
	
	100 if I7=0, Error_L=1, Finished8_L=1 (waiting)

	
	
	101 if I7=1 (go on fetching a 16-bit inst.)

	101
	000
	110

	110
	000
	111

	111
	000
	001 if Finished16_L=0 (go to next cycle)

	
	
	000 if Error_L=0 (go to error state)

	
	
	111 if Finished16_L=1, Error_L=1 (waiting)

	
	D2D1D0 (Q2*Q1*Q0*)


b) Excitation Equation:

D2=Reset’•(Q2’•Q1•Q0 + Q2•Q1’•Q0’•(I7 + I7’•Finished8_L•Error_L) + Q2•Q1’•Q0 + Q2•Q1•Q0’ + Q2•Q1•Q0•Finished16_L•Error_L)
D1=Reset’•(Q1•Q0’ + Q1’•Q0 + Q2•Q1•Q0•Finished16_L•Error_L)
D0=Reset’•(Q2’•Q0’ + Q1•Q0’ + Q2•Q1’•Q0’•(I7’•Finished8_L’ + I7) + Q2•Q1•Q0•(Finished16_L’ + Finished16_L•Error_L))

c) State – Output table 
Part 1:

	Q2Q1Q0
	PB
	BP
	BMAR
	BMDR
	MDRB
	R
	W
	BAIR
	AORB
	BI

	000
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	001
	0
	1
	0
	1
	1
	1
	1
	1
	1
	1

	010
	1
	0
	1
	1
	1
	0
	1
	1
	0
	1

	011
	1
	1
	1
	1
	0
	1
	1
	1
	1
	0

	100*
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	101
	0
	1
	0
	1
	1
	1
	1
	1
	1
	1

	110
	1
	0
	1
	1
	1
	0
	1
	1
	0
	1

	111*
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1


Part 2:

	Q2Q1Q0
	R3
	R2
	R1
	R0
	RB
	BR
	S3
	S2
	S1
	S0
	CN

	000
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	001
	1
	1
	1
	1
	1
	1
	0
	0
	0
	0
	0

	010
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	011
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	100*
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	101
	1
	1
	1
	1
	1
	1
	0
	0
	0
	0
	0

	110
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	111*
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1


*In the state 100 and 111, outputs are controlled by execution circuits (the main circuit is disconnected from outputs). Therefore, use Hi-Z signal instead of 1 in practice.
d) Output Equations:

PB=BMAR=S3=S2=S1=S0=CN=Q1 + Q0’
BP=R=AORB=Q1’ + Q0
MDRB=BI=Q2 + Q1’ + Q0’

All other outputs are not affected by this circuit.
IV. Transition Lists and Equations (Using MSI Counter 74x163)

The Main Circuit (Instruction Fetching Cycle)
	Step
	Reset (Active High)

	
	1
	0

	St0
	St0
	St1

	St1
	St0
	St2

	St2
	St0
	St3

	St3
	St0
	St4

	St4
	St0
	St1 if Finished8_L=0 (go to next cycle)

	
	
	St0 if Error_L=0 (go to error state)

	
	
	St4 if I7=0, Error_L=1, Finished8_L=1 (waiting)

	
	
	St5 if I7=1 (go on fetching a 16-bit inst.)

	St5
	St0
	St6

	St6
	St0
	St7

	St7
	St0
	St1 if Finished16_L=0 (go to next cycle)

	
	
	St0 if Error_L=0 (go to error state)

	
	
	St7 if Finished16_L=1, Error_L=1 (waiting)

	
	Next Step


The CLR input of counter is set:

CLR=Reset’
The LOAD of counter is set:

LOAD=Step4•Step7
Input values C, B, A of the counter need to be set at Step4 and Step7 (by converting from D Flip-Flop’s excitation equations):

C=Error_L• (I7+Finished8_L) • (I7’+Finished16_L)
B=Finished16_L•Error•Step7’
A=Error_L• (Step4+I7+Error_L’+Finished8_L’)

State(Step) – Output table 

Part 1:

	Step
	PB
	BP
	BMAR
	BMDR
	MDRB
	R
	W
	BAIR
	AORB
	BI

	St0
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	St1
	0
	1
	0
	1
	1
	1
	1
	1
	1
	1

	St2
	1
	0
	1
	1
	1
	0
	1
	1
	0
	1

	St3
	1
	1
	1
	1
	0
	1
	1
	1
	1
	0

	St4*
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	St5
	0
	1
	0
	1
	1
	1
	1
	1
	1
	1

	St6
	1
	0
	1
	1
	1
	0
	1
	1
	0
	1

	St7*
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1


Part 2:

	Step
	R3
	R2
	R1
	R0
	RB
	BR
	S3
	S2
	S1
	S0
	CN

	St0
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	St1
	1
	1
	1
	1
	1
	1
	0
	0
	0
	0
	0

	St2
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	St3
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	St4*
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	St5
	1
	1
	1
	1
	1
	1
	0
	0
	0
	0
	0

	St6
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	St7*
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1


Instruction execution circuits

A similar MSI counter and decoder is used for each instruction processor. I don’t list all state-output tables here because it’s easy to look at the state diagram and decide which outputs need to me set.

The three undefined instructions are also handled by resetting the state of the instruction-fetching circuit. (For extra credit.)

V. Testing

Testing of this CPU involves a circuit level testing and a system level testing.

1. Circuit level testing (See file ProcessorControlCircuit.cct.)
The control circuit alone can be tested by manually setting inputs and observe the values of each output. 

First, find the “testing area” and attach all binary switches to the input. (I have to detach them so that the circuit can work in the whole system.) Now, reset the circuit by setting Reset=1. Then input different I7I6I5I4 and see the state of the circuit and all output values at each state. The testing is easy because every state and output should be same as described in the diagrams in this document.
I have tested all 16 types of instructions (including undefined). All observed values are expected. The circuit is working fine at this level.

2. System level testing (See file processor.cct)
Now this circuit is transferred into a symbol and installed in the main CPU architecture. I have finished the testing of following list of instructions:
	Memory Addr.
	Instruction /Hex value
	Comments

	00000000
	1001 1001 /99
	LDI (load a value to a register)

	00000001
	0010 1100 /2C
	The value of last LDI inst. (2c)

	00000002
	0100 1001 /49
	INCR (increase that value)

	00000003
	1001 1000 /98
	LDI (load another value)

	00000004
	1000 0000 /80
	The value of last LDI inst. (80)

	00000005
	0011 1000 /38
	SUBR between 2 register values


The final result (Register 1000’s value) is expected to be 53 (Hexadecimal).
Procedures:

i) Set control circuit’s Reset=1 (Resent is active high)
ii) Enable the 2 bus drivers at the bottom (the 8-bit 74x541 to set data, another 4-bit one to set control signals) so that you can manually set values.

iii) Set pc to 00000000
iv) Load memory with above instructions one by one, from memory address 00000000 first. This is a very tedious job. For each instruction, I need to (1) load memory address to MAR (2) load instruction into MDR (3) assert W.
v) Once all instructions have been input into the memory, disable the 2 bus drivers (disconnect the manual input), and set Reset=0. Show time begins:
Here are the values read from Hex probes, each row indicates a clock cycle.
	BUS
	PC
	MAR
	MDR
	AIR
	AOR
	IR

	xx
	00
	Last
	Last
	xx
	xx
	Last

	00
	00
	Last
	Last
	Xx
	Xx
	Last

	01
	00
	00
	Last
	xx
	01
	Last

	99
	01
	00
	99
	xx
	xx
	Last

	xx
	01
	00
	99
	xx
	xx
	99

	01
	01
	00
	99
	xx
	xx
	99

	02
	01
	01
	99
	Xx
	02
	99

	Xx
	02
	01
	2c
	xx
	xx
	99

	2c
	02
	01
	2c
	xx
	xx
	99

	02
	02
	01
	2c
	xx
	xx
	99

	03
	02
	02
	2c
	Xx
	03
	99

	49
	03
	02
	49
	xx
	xx
	99

	xx
	03
	02
	49
	Xx
	Xx
	49

	2c
	03
	02
	49
	xx
	xx
	49

	2d
	03
	02
	49
	Xx
	2d
	49

	03
	03
	02
	49
	Xx
	Xx
	49

	04
	03
	03
	49
	Xx
	04
	49

	98
	04
	03
	98
	xx
	xx
	49

	xx
	04
	03
	98
	Xx
	Xx
	98

	04
	04
	03
	98
	xx
	xx
	98

	05
	04
	04
	98
	xx
	05
	98

	xx
	05
	04
	80
	xx
	xx
	98

	80
	05
	04
	80
	xx
	xx
	98

	05
	05
	04
	80
	xx
	xx
	98

	06
	05
	05
	80
	Xx
	06
	98

	38
	06
	05
	38
	xx
	xx
	98

	xx
	06
	05
	38
	Xx
	Xx
	38

	2d
	06
	05
	38
	xx
	xx
	38

	80
	06
	05
	38
	2d
	Xx
	38

	53
	06
	05
	38
	2d
	53
	38


By now, the expected result (53) has appeared in the AOR and Bus!
VI. Discussions and Conclusions

The circuit level testing can only tell me whether the circuit is a good implementation of my logic. The system level testing is more important as it shows the machine’s ability to solve real problems. Due to the difficulty of I/O and other things that have to be done manually, it is hard to conduct a comprehensive testing. However, by running this randomly chosen set of instructions, the CPU has shown correctness in instruction fetching and execution. Miracle happens.
000*





001





010





011





Reset’





Reset’





Reset’





Decode and execute the instruction





* If Reset is asserted, any state goes to the 000 state. These transitions are not shown here.





Set PC->MAR


Set PC+1->AOR





Set AOR->PC


Set MEM->MDR





Set MDR->IR





Clear PC





100





Reset’





IR Loaded


Use IR as input





Reset’ •I7’ (If I7=0, that’s a 8-bit instruction!)





000*





001





010





011





Reset’





Reset’





Reset’





Decode and execute





* If Reset is asserted, any state goes to the 000 state. These transitions are not shown here.


** If decoder finds an undefined instruction from IR, then it goes to the error state (initial state).





Set PC->MAR


Set PC+1->AOR





Set AOR->PC


Set MEM->MDR





Set MDR->IR





Clear PC





100





Reset’





Idle state�(IR loaded)





Reset’ •I7’ 





101





110





Set PC->MAR


Set PC+1->AOR





Set AOR->PC


Set MEM->MDR





Reset’ •I7 





Reset’





00*





Decode and execute





111





Reset’





Execution


Failed**


(extra credit)





Execution


successful





Idle state





Reset’





11





10





1





01





Standby





Set AOR-> RI3I2I1I0’


Set Finished8_L Active





Set AIR+ RI3I2I1I0->AOR**





Set RI3I2I1I0’->AIR***





* If Reset is asserted, any state goes to the 00 state. These transitions are not shown here.


** “RI3I2I1I0” means “data at register address I3 I2 I1 I0”


*** “RI3I2I1I0’ ” means “data at register address I3 I2 I1 I0’ ” where I0’ is I0 inverted





Reset’•Start





Reset’





Reset’





Reset’•Start





11





10





01





00*





Reset’





Reset’





* If Reset is asserted, any state goes to the 00 state. These transitions are not shown here.


** “RI3I2I1I0” means “data at register address I3 I2 I1 I0”


*** “RI3I2I1I0’ ” means “data at register address I3 I2 I1 I0’ ” where I0’ is I0 inverted





Set RI3I2I1I0’->AIR***





Set RI3I2I1I0’- AIR ->AOR***





Set AOR-> RI3I2I1I0’


Set Finished8_L Active





Standby





1





00*





01





11





01





Reset’•Start





Reset’





Reset’•Start





* If Reset is asserted, any state goes to the 00 state. These transitions are not shown here.


** “RI3I2I1I0” means “data at register address I3 I2 I1 I0”





Set RI3I2I1I0 + 1->AOR**





Set AOR -> RI3I2I1I0


Set Finished8_L Active








* If Reset is asserted, any state goes to the 0 state. These transitions are not shown here.


** “RI3I2I1I0” means “data at register address I3 I2 I1 I0”





Standby





1





Reset’•Start•ZCC





1





0*





1





Standby





Set AOR -> RI3I2I1I0


Set Finished8_L Active








Set RI3I2I1I0 - 1->AOR**





* If Reset is asserted, any state goes to the 00 state. These transitions are not shown here.


** “RI3I2I1I0” means “data at register address I3 I2 I1 I0”





Reset’





Reset’•Start





11





01





00*





Set RI3I2I1I0 ->PC**


Set Finished8_L Active








00*





Standby





1





* If Reset is asserted, any state goes to the 00 state. These transitions are not shown here.


** “RI3I2I1I0” means “data at register address I3 I2 I1 I0”





Set RI3I2I1I0 ->PC**


Set Finished8_L Active








Standby





1





Set Finished8_L Active





11





00*





Reset’•Start•ZCC’





01





10





11





Reset’•Start





Reset’





Reset’





* If Reset is asserted, any state goes to the 00 state. These transitions are not shown here.


** “RI3I2I1I0” means “data at register address I3 I2 I1 I0”





Set MDR->MAR





Set MEM->MDR





Set MDR-> RI3I2I1I0 **


Set Finished16_L Active





Standby





1





0*





1





Reset’•Start





* If Reset is asserted, any state goes to the 0 state. These transitions are not shown here.


** “RI3I2I1I0” means “data at register address I3 I2 I1 I0”





Set MDR -> RI3I2I1I0**


Set Finished16_L Active








Standby





1





000*





001





010





011





Reset’•Start





Reset’





Reset’





* If Reset is asserted, any state goes to the 000 state. These transitions are not shown here.


** “RI3I2I1I0” means “data at register address I3 I2 I1 I0”





Set MDR->MAR





Set MEM->MDR


Set RI3I2I1I0 -> AIR **





Set AIR + MDR ->AOR





Standby





1





100





Set AOR -> RI3I2I1I0


Set Finished16_L Active





000*





001





010





011





Reset’•Start





Reset’





Reset’





* If Reset is asserted, any state goes to the 000 state. These transitions are not shown here.


** “RI3I2I1I0” means “data at register address I3 I2 I1 I0”





Set MDR->MAR





Set MEM->MDR





Set MDR->AIR





Standby





1





100





Set AOR -> RI3I2I1I0


Set Finished16_L Active





00*





01





10





11





Reset’•Start





Reset’





Reset’





* If Reset is asserted, any state goes to the 00 state. These transitions are not shown here.


** “RI3I2I1I0” means “data at register address I3 I2 I1 I0”





Set MDR->MAR





Set RI3I2I1I0 ->MDR**





Set MDR-> MEM


Set Finished16_L Active





Standby





1





0*





1





Reset’•Start





* If Reset is asserted, any state goes to the 0 state. These transitions are not shown here.





Set MDR ->PC


Set Finished16_L Active








Standby





1





00*





01





Reset’•Start•ZCC





* If Reset is asserted, any state goes to the 00 state. These transitions are not shown here.





Set MDR  ->PC


Set Finished16_L Active








Standby





1





11





Set Finished16_L Active





Reset’•Start•ZCC’





0*





1





Reset’•Start





* If Reset is asserted, any state goes to the 0 state. These transitions are not shown here.





Set Error_L Active





Standby





1





101





Set RI3I2I1I0 -AIR ->AOR


**








