CSE 258 Project 3 Replacement Strategies for Pure Paging

With Java
Haibei Zhang

Mar 11, 2003

[image: image1.png]=lo/x|

File Help

{ Wain Program | Siaietis. |

w31t v|LoAD Select yourreplacement sirategy: | Random |

Job 23 turn

b
Tob
Tob
Tob
Tob
Tob
Tob
Tob
Tob
Tob

2
2
2
2
2
2
2
2
2
2

refersncing page 9 in frane 4
quitting 1/10
quitting 2/10
quitting 3/10
quitting 4/10
quitting 5/10
quitting 6/10
quitting /10
quitting 8/10
quitting 9/10

Tine3135: Job 23 quitting 10/10 Goodbye

Job 23 turn

v|| +LoatingPage Faut - Completing out . Referencing i Does not requite CPU

Step 1: Input 'Step 2: Run Jobs
age 2 ~

age 2 ”

aee 2 Tins3725;
age 2 Tins3126,
aee 2 Tins3rar
age 2 Tins3125
age 2 Tins3125
e 2 Tins3730)
age 2 Tina3731
age 2 Tins31z
age 2 Tined133
e 2 TinedT34
age 2

age 2 3

age 2

age 2 |

File hw3-1.txt loaded

[image: image2.png]{8 UCONN CSE 258 Project 3 by Haibei Zhang ~=loix|

File Help

Save statistics as: |nw3-1_stats.bt save

Report generated using input file hw3-1.txt and Random strategy.

Purpose of the Project

The purpose of this project is to simulate 4 virtual memory management strategies in pure paging and evaluate each strategy’s performance under different conditions.

How To Use:

Launch:

There are two ways to launch this program:

a. Compile and build the program source code in “source” folder:

javac mainClass.java
(You will need JDK 1.4.0 to compile)

java mainClass

b. Run the Windows-native executable (if you are using a Windows machine):

>haibei_proj3.exe

Import and export files (.txt files) should be in the same folder as the program.

Run main program (virtual memory management simulator):

Choose “main program” label to run the main program. Choose a file name from the pull-down box (or type your file name), click “Load”, then choose a strategy from the pull-down box and click “Run” to start running. Finally, click the “statistics” label to view statistics of the last run. You may also save the statistics to a file in the “statistics ” panel.
Assumptions

Since the textbook and the project requirement do not explain the implementation in detail, I make following assumptions:

1. Pages of each job are allocated secondary storage pages when the job enters the “running job” set.
2. Once a job is finished, it’s pages are deleted in both primary storage and secondary storage.

3. If a page is moved from secondary storage to primary storage, its copy in secondary storage is not deleted. A page is only deleted from secondary storage when its job is finished.

4. Loading a page into an empty page frame also takes 3 steps.
5. If, in a job’s round, a page is just loaded into the primary memory and then the job has no CPU time left, then this page is considered “referenced” (actually it will be referenced at first in the next round). This will make it the most recently used page frame and avoid swapping it out immediately.
Design of Page Mapping Table

The page mapping table is implemented as a vector of Page objects. Each Page object contains a residence bit (whether it is in primary memory or not), it’s primary page frame number, it’s secondary page number, and it’s job id (since each job is independent, each page can only belong to one job.)
Only jobs in the running set have entries in the page mapping table. Table entries for that job are not created at once when the job enters the running set. In stead, table entries are gradually added when a job references new pages. Therefore, table entries are dynamically added based on the need of the job. When a table entry is added, a secondary storage page is allocated to the page.

Table entries for a job, along with its secondary storage pages, are freed when the job is completed (after the full-cycle completing-out process) and moves to the completed set.

Observed Results
Total running time (CPU steps)

	
	Random
	FIFO
	LRU
	LFU

	hw3-1.txt
	3855
	3402
	3651
	4152

	hw3-2.txt
	3910
	3580
	3805
	4486

	hw3-3.txt
	4009
	3616
	3805
	4384

	hw3-4.txt
	3582
	3255
	3423
	4029

Total page faults
	
	Random
	FIFO
	LRU
	LFU

	hw3-1.txt
	455
	304
	387
	554

	hw3-2.txt
	429
	319
	394
	621

	hw3-3.txt
	480
	349
	412
	605

	hw3-4.txt
	400
	291
	347
	549

This result shows that FIFO achieves the best performance on the 4 data sets. This means that FIFO can best predict the future usage of primary memory in this simulator. In this simulator, the primary storage only has 20 page frames, while each job in the data sets only has 10 steps per round. As there are many jobs competing for the CPU, it takes a long time for a job to gain the CPU again. Therefore, if a page has been in the primary storage for 20 steps (which means, by FIFO strategy, it will be swapped out on next step), then its owner (job) has lost the CPU just a little time before (10 steps before), which implies that the job has to wait a long time to gain the CPU again. Therefore swapping out such a page is a good choice.
However, LRU does not predict the future use of primary memory well. A least recently referenced page may have stayed in primary memory for a long time, which implies that the job will gain the CPU very soon. It is not efficient to swap out such a page.

LFU always shows the poorest performance because many of its judgments are not wise. Since the least frequently used page can be the page brought into the main memory most recently, while in our 4 data sets the same page is usually referenced consecutively by the job, it is almost the worst choice. In short, it just swaps out those pages that are just needed on the next step.
From this observation, I think that LRU will be more efficient if the data set has more pages for each job so that, even the system swaps out the least recently used page, the job still has to wait a long time for the next round. Therefore, the swapped out page may be a good choice.
The result of running myjobs1.txt is:

	
	Random
	FIFO
	LRU
	LFU

	myjobs1.txt
	3873
	3630
	3630
	4497

Here LRU shows equivalent performance as FIFO.

On the other hand, if the data set has a lot of jobs, while each job only has very few page references, then each page reference is unique and the time of waiting for CPU will be long. There’s no difference for each strategy to predict the future, because no same page will be referenced again in the future
	
	Random
	FIFO
	LRU
	LFU

	Myjobs2.txt
	180
	180
	180
	180

I didn’t build data sets for FIFO because it is the best in most cases (including the 4 data sets that we are given). Also, I cannot find a data set to show LFU’s advantage because of its obvious limitation.
Conclusion
Under most circumstances, where the data set has a number of jobs and each job has some repeating references to same pages, FIFO is the best choice. If a data set has a lot of jobs each with small numbers of pages, random strategy shows slight advantage. If all pages are different in any job, then all 4 strategies perform similar, because every page just appears once in the primary memory. The cost is same if swapping out any of them. If there are a lot of repeating pages in a data set, then the difference between wise choice and poor choice is remarkable. However, in any cases I tested, LFU is always the poorest in terms of predicting the future.
